Nitric oxide-mediated spinal disinhibition contributes to the sensitization of primate spinothalamic tract neurons.
نویسندگان
چکیده
This study concentrated on whether an increase in spinal nitric oxide (NO) diminishes inhibition of spinothalamic tract (STT) cells induced by activating the periaqueductal gray (PAG) or spinal glycinergic and GABAergic receptors, thus contributing to the sensitization of STT neurons. A reduction in inhibition of the responses to cutaneous mechanical stimuli induced by PAG stimulation was seen in wide dynamic range (WDR) STT cells located in the deep layers of the dorsal horn when these neurons were sensitized during administration of a NO donor, 3-morpholinosydnonimine (SIN-1), into the dorsal horn by microdialysis. In contrast, PAG-induced inhibition of the responses of high-threshold (HT) and superficial WDR STT cells was not significantly changed by spinal infusion of SIN-1. A reduction in PAG inhibition when STT cells were sensitized after intradermal injection of capsaicin could be nearly completely blocked by pretreatment of the dorsal horn with a NO synthase inhibitor, 7-nitroindazole. Moreover, spinal inhibition of nociceptive activity of deep WDR STT neurons elicited by iontophoretic release of glycine and GABA agonists was attenuated by administration of SIN-1. This change paralleled the change in PAG-induced inhibition. However, the inhibition of HT and superficial WDR cells induced by glycine and GABA release did not show a significant change when SIN-1 was administered spinally. Combined with our recent results, these data show that the effectiveness of spinal inhibition can be reduced by the NO/cGMP pathway. Thus disinhibition may constitute one mechanism underlying central sensitization.
منابع مشابه
Nitric oxide mediates the central sensitization of primate spinothalamic tract neurons.
Nitric oxide (NO) has been proposed to contribute to the development of hyperalgesia by activating the NO/guanosine 3',5'-cyclic monophosphate (cGMP) signal transduction pathway in the spinal cord. We have examined the effects of NO on the responses of primate spinothalamic tract (STT) neurons to peripheral cutaneous stimuli and on the sensitization of STT cells following intradermal injection ...
متن کاملInhibition of primate spinothalamic tract neurons by spinal glycine and GABA is modulated by guanosine 3',5'-cyclic monophosphate.
Our recent work has suggested that the nitric oxide/guanosine 3', 5'-cyclic monophosphate (NO/cGMP) signal transduction system contributes to central sensitization of spinothalamic tract (STT) neurons in part by influencing the descending inhibition of nociception resulting from stimulation in the periaqueductal gray. This study was designed to examine further whether activation of the NO/cGMP ...
متن کاملAlternative Medicine in Neuropathic Pain Opioids in the Spinal Cord and Central Sensitization Spinothalamic Tract Neurons, Role of Nitric Oxide Long-Term Potentiation and Long-Term Depression in the Spinal Cord
This is a long-lasting increase in synaptic efficacy resulting from repetitive activation of the synapse. This process was first described in hippocampus, whereby high-frequency stimulation of afferent pathways leads to a potentiated post-synaptic response that can last for hours to days. It is a form of activity-dependent plasticity. LTPmay increase the efficiencyof pain transmission for weeks...
متن کاملInhibition of Primate Spinothalamic Tract Neurons by Spinal Glycine and GABA Is Modulated by Guanosine 39,59-Cyclic Monophosphate
Lin, Qing, Jing Wu, Yuan Bo Peng, Minglei Cui, and William D. Willis. Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is modulated by guanosine 39,59-cyclic monophosphate. J. Neurophysiol. 81: 1095–1103, 1999. Our recent work has suggested that the nitric oxide/guanosine 39,59-cyclic monophosphate (NO/cGMP) signal transduction system contributes to central sensitiza...
متن کاملInvolvement of cGMP in nociceptive processing by and sensitization of spinothalamic neurons in primates.
Central sensitization of spinothalamic tract (STT) neurons in anesthetized monkeys after intradermal injection of capsaicin depends in part on disinhibition. Protein kinase C is suggested to participate in this process. The present study shows that the nitric oxide-cGMP (NO-cGMP) signal transduction system also contributes to sensitization of wide dynamic range (WDR) STT neurons located in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 81 3 شماره
صفحات -
تاریخ انتشار 1999